Direct Formation of Ketones and Secondary Alcohols from Carbon Monoxide, Hydrogen and Water over Cerium Oxide Catalysts

Kazuhito Kushihashi, Ken-ichi Maruya,* Kazunari Domen and Takaharu Onishi

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

The CO– H_2 reaction in the presence of H_2O formed ketones and secondary alcohols over cerium oxide catalysts at around 653 K.

The CO–H₂ reaction can produce oxygenates such as C₂oxygenates,¹ mixed higher alcohols,² isobutyl alcohol³ and 2-methylpropanal⁴ in addition to methanol. These oxygenates have the carbon–oxygen bond at the terminal position of the carbon chain. The formation of these compounds could be explained by the insertion of CO into metal–surface species bonds followed by the hydrogenation. Thus, the formation of ketones and secondary alcohols from CO and H₂ as the primary products has not been reported. In this paper we report the first example of the direct formation of ketones and secondary alcohols from the CO–H₂ reaction over cerium oxide catalysts.

The catalysts were prepared according to the previous paper.⁵ The reaction was carried out using a conventional flow system with a quartz reactor of 12 mm outer diameter under atmospheric pressure. The catalyst (1.0 g) was treated with a mixture of CO, H_2 and $N_2(1:1:0.5)$ at 673 K for more than 4 h and then cooled to a given temperature. The production of ketones and secondary alcohols was carried out by the continued addition of H_2O vapour to the reaction gas. The reaction reached the steady state 8 h after the H_2O addition. Water vapour was introduced by passing the reaction gas at 50 ml min⁻¹ through water at room temperature, where the molar concentration of H_2O was between 4 and 8%. The products were identified by GC–MS and determined by GC equipped with an Adsorb P-1 column.

Table 1 shows the product formation rates in the CO-H₂ reaction in the presence of H₂O over cerium oxide catalysts at 653 K. Under the same reaction conditions ZrO_2 catalysts formed only CO₂ and H₂ by the water gas shift reaction of CO. However, CeO₂ catalysts produce hydrocarbons, alcohols and ketones along with a large amount of CO₂ by the water gas shift reaction. Hydrocarbons are distributed from C₁ to C₅

unselectively. Isobutene selectivity in C_4 hydrocarbons was about 50%, which is fairly low in comparison with the value of more than 90% in the CO-H₂ reaction.⁶ Table 2 shows the distribution of ketones. Only trace amounts of ketones higher

Table 1 Product formation rates in the CO– H_2 reaction in the presence of H_2O over cerium oxide catalysts at 653 K^{*a*}

	Surface area/ m ² g ⁻¹	Formation rates/ μ mol h ⁻¹ (g cat) ^{-1b}					
Catalyst (atomic ratio)		Hydrocarbons	Alcohols	Ketones			
$CeO_2(100)$	27	6.5	1.9	2.5			
Y_2O_3 -Ce $O_2(10:100)$	63	8.1	2.9	2.7			
$La_2O_3 - CeO_2(5:100)$	79	4.0	4.1	2.7			
$Cs_2O-CeO_2(5:100)$	86	10.1	2.9	2.3			
$MgO-CeO_{2}(5:100)$	68	9.5	1.2	2.6			
$CaO-CeO_2(5:100)$	54	5.6	5.2	3.9			

^{*a*} Catalyst: 1.0 g, flow rate: 50 ml min⁻¹ (CO: $H_2: N_2 = 20: 20: 10$). ^{*b*} Based on carbon.

 Table 2 Selectivity in ketones

Catalyst	Selectivity (%)					
	Acetone Butan-2-one 3-Methylbutan-2-or					
CeO ₂	30	35	35			
Y_2O_3 -CeO ₂	24	29	47			
La ₂ O ₃ -CeO ₂	41	32	27			
Cs_2O-CeO_2	26	32	42			
MgO-CeO ₂	28	40	32			
CaO-CeO ₂	36	29	35			

Table 3 Alcohol formation rates in the CO-H ₂ reaction in the	presence of H ₂ O over cerium oxide catalysts at 583 and 653 K
--	---

		Water	60	Formation rate/ μ mol h ⁻¹ (g cat) ^{-1 b}						
Catalyst	T/K	(%)	(%)	МеОН	EtOH	1-PrOH	2-PrOH	2-Me-1-PrOH	2-BuOH	CO_2
CeO ₂	583	4.0	0.2	23	1.3	0.7	0.2	1.0		80
_	653	3.0	0.8	1.0			0.8		0.1	670
Y_2O_3 -CeO ₂	583	2.8	0.3	28	1.6	0.8	0.6	1.9	0.2	110
	653	2.5	2.5	2.2			0.9	0.4	0.2	690
La_2O_3 -CeO ₂	583	а	0.3	47	1.9	0.9	0.3	2.2	0.1	80
	653	4.7	1.1	3.0			0.8	0.2	0.1	510
Cs_2O-CeO_2	583	3.8	0.5	29	1.0	0.5	0.3	1.3		190
	653	2.1	1.8	1.6			1.1	0.2	0.2	870
MgO–CeO ₂	583	7.9	0.6	12	1.1	0.3	0.7	0.1	0.2	170
-	653	1.2	2.1	0.5			0.6		0.1	990
CaO-CeO ₂	583	9.3	0.3	49	3.8	1.0	0.4	2.7	0.1	110
_	653	5.6	1.3	4.2			0.8	0.1	0.1	610

^a Not measured. ^b Based on carbon.

than C_6 were formed. Aldehydes, in particular 2-methylpropanal, which is a main product from CO and H_2 over CeO₂ at 523 K, were not detected.⁴ The addition of CO₂ instead of H_2O only led to the retardation of the CO– H_2 reaction. Thus, the addition of H_2O resulted in the retardation of branched-chain C_4 product formation.

Table 3 shows water concentration, CO conversion and the formation rates of alcohols and CO_2 at 583 and 653 K.

The lowering of the reaction temperature to 583 K led to a much lower yield of CO_2 , higher yield of alcohols, and almost no formation of hydrocarbons and ketones. Alcohols formed at 583 K consist mainly of methanol and contain terminal alcohols such as ethanol, propan-1-ol, and 2-methylpropan-1-ol, which are not formed in the reaction at 653 K. The reaction at 673 K resulted in an increase in production of CO_2 and hydrocarbons and the severe retardation of the formation of oxygenates. These results indicate that the presence of H_2O and a reaction temperature of around 653 K are essential for the formation of ketones and secondary alcohols.

The distributions of the alcohols, propan-2-ol and butan-2-ol, and the ketones, acetone, butan-2-one and 3-methylbutan-2-one, and the relatively good effect of alkali and alkaline-earth oxide additives seems to suggest that carbon bond propagation occurs by an aldol condensation type reaction. However, the formation of propan-2-ol and acetone may indicate a mechanism other than the aldol condensation type reaction, because the reaction of methanol and ethanol forms propan-1-ol but not propan-2-ol.⁷ The X-ray diffraction measurement of the catalysts showed only broad fluorite structure pattern due to cerium oxide, indicating a good dispersion of additives. One of the effects of additives may be to keep the higher surface area by the high dispersion.

Received, 17th September 1991; Com. 1/04824D

References

- M. Ichikawa, Bull. Chem. Soc. Jpn., 1978, 51, 2268, 2278; M. Ichikawa, K. Sekizawa, K. Shikakura and M. Kawai, J. Mol. Catal., 1981, 11, 167; P. R. Watson and G. A. Somorjai, J. Catal., 1981, 72, 347; H. Orita, S. Naito and K. Tamaru, J. Catal., 1984, 90, 183; H. Arakawa, Chem. Lett., 1984, 1607; T. Nakajo, K. Sano, S. Matsuhira and H. Arakawa, Chem. Lett., 1986, 1557; G. Van Der Lee, B. Schuller, H. Post, T. L. Favre and V. Ponec, J. Catal., 1986, 98, 522.
- 2 T. Tatsumi, A. Muramatsu and H. Tominaga, *Chem. Lett.*, 1985, 593; T. Hayasaka, Y. Obayashi, S. Uchiyama and N. Kawata, *Chem. Lett.*, 1986, 1405.
- R. B. Anderson, J. Feldman and H. H. Storch, *Ind. Eng. Chem.*, 1952, 44, 2418; G. Natta, *Catalysis*, ed. P. H. Emmett, Reinhold, New York, 1956, vol. 5, p. 131.
 K. Maruya, T. Arai, M. Aikawa, K. Domen and T. Onishi,
- 4 K. Maruya, T. Arai, M. Aikawa, K. Domen and T. Onishi, *Catalytic Science and Technology*, ed. S. Yoshida, N. Takezawa and T. Ono, Kodansha, Tokyo, 1991, vol. 1, p. 457.
- 5 T. Arai, K. Maruya, K. Domen and T. Onishi, Bull. Chem. Soc. Jpn., 1989, **62**, 349.
- 6 K. Maruya, A. Inaba, T. Maehashi, K. Domen and T. Onishi, J. Chem. Soc., Chem. Commun., 1985, 487.
- 7 W. Ueda, T. Kuwabara, T. Ohshida and Y. Morikawa, J. Chem. Soc., Chem. Commun., 1990, 1558.